World Journal of Personalized Medicine

Advanced search

The prospect of pluripotent stem cells for diabetes mellitus treatment


Treatment options are limited for many diseases including diabetes, cancer and neurological and, many patients do not receive adequate therapy. New chemical entities largely developed within the BioPharma industry are not sufficient to satisfy patient’s needs. New gene and modified cell constructs were developed in academia and are expected on the market recently. This review presents describes somatic cells reprogramming technology and its application for the new drug development. We then summarize the progress made in genome editing and its application to cure monogenic hereditary disorders of the endocrine system.

About the Authors

Alexandra V. Panova

Vavilov Institute of General Genetics RAS

Russian Federation

Daria V. Goliudsova

Vavilov Institute of General Genetics RAS

Russian Federation

Sergey L. Kiselev

Vavilov Institute of General Genetics RAS; Endocrinology Research Centre

Russian Federation

PhD, Professor


1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156. doi: 10.1038/292154a0.

2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634-7638. doi: 10.1073/pnas.78.12.7634.

3. James A. Thomson, Joseph Itskovitz-Eldor SSS, Michelle A. Waknitz, Jennifer J. Swiergiel VSM, Jones JM. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282(5391):1145-1147. doi: 10.1126/science.282.5391.1145.

4. Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2015;379(12):713-720. doi: 10.1016/S0140-6736(12)60028-2.

5. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516. doi: 10.1016/S0140-6736(14)61376-3.

6. Agulnick AD, Ambruzs DM, Moorman MA, et al. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo. Stem Cells Transl Med. 2015;4(10):1214-1222. doi: 10.5966/sctm.2015-0079.

7. Федеральный закон от 20 мая 2002 г. N 54-ФЗ. «О временном запрете на клонирование человека». [Federal Law of Russian Federation on 20 May 2002 N54-FZ “On the temporary ban on human cloning”. (in Russ.)]

8. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663-676. doi: 10.1016/j.cell.2006.07.024.

9. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987-1000. doi: 10.1016/0092-8674(87)90585-X.

10. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131(5):861-872. doi: 10.1016/j.cell.2007.11.019.

11. Yu, Vodyanik, Smuga-Otto, et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Sci (New York, NY). 2007;318(5858):1917-1920. doi: 10.1126/science.1151526.

12. Li W, Wei W, Zhu S, et al. Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell. 2009;4(4):370. doi: 10.1016/j.stem.2009.03.002.

13. Liu H, Zhu F, Yong J, et al. Generation of Induced Pluripotent Stem Cells from Adult Rhesus Monkey Fibroblasts. Cell Stem Cell. 2008;3(6):587-590. doi: 10.1016/j.stem.2008.10.014.

14. Kwon DJ, Jeon H, Oh KB, et al. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. Biomed Res Int. 2013;2013:140639. doi: 10.1155/2013/140639.

15. Aasen, Trond Raya, Angel Barrero, Maria J Garreta, Elena Consiglio, Antonella Gonzalez, Federico Vassena, Rita Bilić, Josipa Pekarik, Vladimir Tiscornia G, Edel, Michael Boué S, Izpisúa Belmonte JC. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276-1284. doi: 10.1038/nbt.1503.

16. Eminli S, Utikal J, Arnold K, et al. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26(10):2467-2474. doi: 10.1634/stemcells.2008-0317.

17. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321(5889):699-702. doi: 10.1126/science.1154884.

18. Hanna J, Markoulaki S, Schorderet P, et al. Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell. 2008;133(2):250-264. doi: 10.1016/j.cell.2008.03.028.

19. Shutova M V, Bogomazova AN, Lagarkova MA, Kiselev SL. Generation and characterization of human induced pluripotent stem cells. Acta Naturae. 2009;1(2):91-92.

20. Stadtfeld M, Hochedlinger K. Induced pluripotency: History, mechanisms, and applications. Genes Dev. 2010;24(20):2239-2263. doi: 10.1101/gad.1963910.

21. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. Cell Stem Cell. 2008;2(3):230-240. doi: 10.1016/j.stem.2008.02.001.

22. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949-953. doi: 10.1126/science.1164270

23. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766-770. doi: 10.1038/nature07863.

24. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618-630. doi: 10.1016/j.stem.2010.08.012.

25. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27(11):2667-2674. doi: 10.1002/stem.201.

26. Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-362. doi: 10.2183/pjab.85.348.

27. Yu J, Hu K, Smuga-Otto K, et al. Human Induced Pluripotent Stem Cells Freee of Vector and Transgene Sequences. Science (80- ). 2009;324(5928):797-801. doi: 10.1126/science.1172482.

28. Kim D, Kim CH, Moon JI, et al. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell. 2009;4(6):472-476. doi: 10.1016/j.stem.2009.05.005.

29. Shi Y, Do JT, Desponts C, et al. A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell. 2008;2(6):525-528. doi: 10.1016/j.stem.2008.05.011.

30. Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 2009;27(12):2992-3000. doi: 10.1002/stem.240.

31. Danwei H, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26(11):1269-1275. doi: 10.1038/nbt.1502.

32. Zhao X, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86-90. doi: 10.1038/nature08267.

33. Shutova MV, Surdina AV, Ischenko DS, et al. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion. Cell Cycle. 2016;15(7):986-997. doi: 10.1080/15384101.2016.1152425.

34. Lagarkova MA, Shutova M V., Bogomazova AN, et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle. 2010;9(5):937-946. doi: 10.4161/cc.9.5.10869.

35. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. N Engl J Med. 2017;376(11):1038-1046. doi: 10.1056/NEJMoa1608368.

36. Cyranoski D. Japanese man is first to receive ‘reprogrammed’ stem cells from another person. Nature. 2017. doi: 10.1038/nature.2017.21730

37. Turner M, Leslie S, Martin NG, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13(4):382-384. doi: 10.1016/j.stem.2013.08.003.

38. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218-228. doi: 10.1016/S0140-6736(07)60111-1.

39. Tabrizi SJ, Scahill RI, Owen G, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurol. 2013;12(7):637-649. doi: 10.1016/S1474-4422(13)70088-7.

40. Nekrasov ED, Vigont VA, Klyushnikov SA, et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener. 2016;11(1):1-15. doi: 10.1186/s13024-016-0092-5.

41. Kang X, He W, Huang Y, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR / Cas-mediated genome editing. J Assist Reprod Genet. 2016;33(5):581-588. doi: 10.1007/s10815-016-0710-8.

42. Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428-439. doi: 10.1016/j.cell.2014.09.040.

43. Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121-1133. doi: 10.1038/nbt.3033.

44. Rajaei B, Shamsara M, Amirabad LM, et al. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells. J Cell Physiol. 2017;232(10):2616-2625. doi: 10.1002/jcp.25459.

45. Yabe D, Ambos A, Cariou B, et al. Efficacy of lixisenatide in patients with type 2 diabetes: A post hoc analysis of patients with diverse β-cell function in the GetGoal-M and GetGoal-S trials. J Diabetes Complications. 2016;30(7):1385-1392. doi: 10.1016/j.jdiacomp.2016.05.018.

46. Riolobos L, Hirata RK, Turtle CJ, et al. HLA engineering of human pluripotent stem cells. Mol Ther. 2013;21(6):1232-1241. doi: 10.1038/mt.2013.59.

Supplementary files

1. Untitled
Type Other
Download (B)    
Indexing metadata


For citations:

Panova A.V., Goliudsova D.V., Kiselev S.L. The prospect of pluripotent stem cells for diabetes mellitus treatment. World Journal of Personalized Medicine. 2017;1(1):13-17. (In Russ.)

Views: 441

ISSN 2587-733X (Online)