Preview

Perspectives of pharmacogenetics approach to personalized tamoxifen therapy

https://doi.org/10.14341/WJPM9274

Abstract

Tamoxifen is the selective modulator of estrogen receptors. Nowadays, it is widely used in the treatment of ER(+) breast cancer and substantially decreases the risks of recurrence and disease progression. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is metabolized by cytochrome P450, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. The effectiveness and success of treatment depends largely on concentrations of the active tamoxifen metabolites in blood plasma. Polymorphisms in the genes encoding these enzymes are proposed to influence on pharmacokinetics and pharmacodynamics of tamoxifen. Therefore, pharmacogenetic approach may form the basis of personalized treatment of breast cancer. In this systematic review, we analyze all current data about the potential use of genotyping of CYP2D6, CYP3A4/5, CYP2B6 to predict an individual response on tamoxifen treatment.

About the Authors

Marina I. Savelyeva

Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University


Russian Federation

MD, PhD, Professor



Julia S. Panchenko

 I.M. Sechenov First Moscow State Medical University


Russian Federation

MD student



Irina A. Urvantseva

 I.M. Sechenov First Moscow State Medical University


Russian Federation

MD student



Anna K. Ignatova

I.M. Sechenov First Moscow State Medical University 


Russian Federation

MD student



Irina V. Poddubnaya

Russian Medical Academy of Continuous Professional Education


Russian Federation

MD, Professor



References

1. Early Breast Cancer Trialists’ Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet. 2005;365(9472):1687-1717. doi: 10.1016/S0140-6736(05)66544-0

2. Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771-784. doi: 10.1016/S0140-6736(11)60993-8

3. Massarweh S, Schiff R. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res. 2007;13(7):1950-1954. doi: 10.1158/1078-0432.CCR-06-2540

4. Burstein HJ, Griggs JJ, Prestrud AA, Temin S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Oncol Pract. 2010;6(5):243-246. doi: 10.1200/JOP.000082

5. Schiavon G, Smith IE. Endocrine therapy for advanced/metastatic breast cancer. Hematol Oncol Clin North Am. 2013;27(4):715-736, viii. doi: 10.1016/j.hoc.2013.05.004

6. Bardia A, Stearns V. Personalized tamoxifen: a step closer but miles to go. Clin Cancer Res. 2010;16(17):4308-4310. doi: 10.1158/1078-0432.CCR-10-1506

7. Binkhorst L, Mathijssen RH, Jager A, van Gelder T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev. 2015;41(3):289-299. doi: 10.1016/j.ctrv.2015.01.002

8. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062-1075. doi: 10.1124/jpet.104.065607

9. Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol. 2005;55(5):471-478. doi: 10.1007/s00280-004-0926-7

10. Johnson MD, Zuo H, Lee KH, et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat. 2004;85(2):151-159. doi: 10.1023/B:BREA.0000025406.31193.e8

11. Singh MS, Michael M. Role of xenobiotic metabolic enzymes in cancer epidemiology. Methods Mol Biol. 2009;472:243-264. doi: 10.1007/978-1-60327-492-0_10

12. Singh MS, Francis PA, Michael M. Tamoxifen, cytochrome P450 genes and breast cancer clinical outcomes. Breast. 2011;20(2):111-118. doi: 10.1016/j.breast.2010.11.003

13. Boocock DJ, Brown K, Gibbs AH, et al. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis. 2002;23(11):1897-1901.

14. Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4’-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002;30(8):869-874.

15. Coller JK, Krebsfaenger N, Klein K, et al. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol. 2002;54(2):157-167. PMC1874408

16. Gaedigk A, Blum M, Gaedigk R, et al. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet. 1991;48(5):943-950.

17. de Vries Schultink AH, Zwart W, Linn SC, et al. Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen. Clin Pharmacokinet. 2015;54(8):797-810. doi: 10.1007/s40262-015-0273-3

18. Human cytochrome P450 (CYP) allele nomenclature T. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. Available at: http://www.cypalleles.ki.se/cyp2d6.htm. Accessed 23.04.2017

19. Del Re M, Citi V, Crucitta S, et al. Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel? Pharmacol Res. 2016;107:398-406. doi: 10.1016/j.phrs.2016.03.025

20. Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci. 2007;96(9):2224-2231. doi: 10.1002/jps.20892

21. Murdter TE, Schroth W, Bacchus-Gerybadze L, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89(5):708-717. doi: 10.1038/clpt.2011.27

22. Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80(1):61-74. doi: 10.1016/j.clpt.2006.03.013

23. Lim HS, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol. 2007;25(25):3837-3845. doi: 10.1200/JCO.2007.11.4850

24. Gjerde J, Hauglid M, Breilid H, et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol. 2008;19(1):56-61. doi: 10.1093/annonc/mdm434

25. Madlensky L, Natarajan L, Tchu S, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89(5):718-725. doi: 10.1038/clpt.2011.32

26. Martinez de Duenas E, Ochoa Aranda E, Blancas Lopez-Barajas I, et al. Adjusting the dose of tamoxifen in patients with early breast cancer and CYP2D6 poor metabolizer phenotype. Breast. 2014;23(4):400-406. doi: 10.1016/j.breast.2014.02.008

27. Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97(1):30-39. doi: 10.1093/jnci/dji005

28. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23(36):9312-9318. doi: 10.1200/JCO.2005.03.3266

29. Wegman P, Elingarami S, Carstensen J, et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res. 2007;9(1):R7. doi: 10.1186/bcr1640

30. Wegman P, Vainikka L, Stal O, et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res. 2005;7(3):R284-290. doi: 10.1186/bcr993

31. Chamnanphon M, Pechatanan K, Sirachainan E, et al. Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen. Pharmgenomics Pers Med. 2013;6:37-48. doi: 10.2147/PGPM.S42330

32. Kiyotani K, Mushiroda T, Sasa M, et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci. 2008;99(5):995-999. doi: 10.1111/j.1349-7006.2008.00780.x

33. Kiyotani K, Mushiroda T, Imamura CK, et al. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol. 2010;28(8):1287-1293. doi: 10.1200/JCO.2009.25.7246

34. Saladores P, Murdter T, Eccles D, et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J. 2015;15(1):84-94. doi: 10.1038/tpj.2014.34

35. Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 2007;25(33):5187-5193. doi: 10.1200/JCO.2007.12.2705

36. Xu Y, Sun Y, Yao L, et al. Association between CYP2D6 *10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol. 2008;19(8):1423-1429. doi: 10.1093/annonc/mdn155

37. Regan MM, Leyland-Jones B, Bouzyk M, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst. 2012;104(6):441-451. doi: 10.1093/jnci/djs125

38. Rae JM, Drury S, Hayes DF, et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst. 2012;104(6):452-460. doi: 10.1093/jnci/djs126

39. Dezentje VO, van Schaik RH, Vletter-Bogaartz JM, et al. CYP2D6 genotype in relation to tamoxifen efficacy in a Dutch cohort of the tamoxifen exemestane adjuvant multinational (TEAM) trial. Breast Cancer Res Treat. 2013;140(2):363-373. doi: 10.1007/s10549-013-2619-6

40. Stanton V, Jr. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J Natl Cancer Inst. 2012;104(16):1265-1266; author reply 1266-1268. doi: 10.1093/jnci/djs305

41. Goetz MP, Suman VJ, Hoskin TL, et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin Cancer Res. 2013;19(2):500-507. doi: 10.1158/1078-0432.CCR-12-2153

42. Schroth W, Goetz MP, Hamann U, et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA. 2009;302(13):1429-1436. doi: 10.1001/jama.2009.1420

43. Province MA, Goetz MP, Brauch H, et al. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin Pharmacol Ther. 2014;95(2):216-227. doi: 10.1038/clpt.2013.186

44. Berry DA. CYP2D6 genotype and adjuvant tamoxifen. Clin Pharmacol Ther. 2014;96(2):138-140. doi: 10.1038/clpt.2014.96

45. Yang G, Nowsheen S, Aziz K, Georgakilas AG. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol Ther. 2013;139(3):392-404. doi: 10.1016/j.pharmthera.2013.05.005

46. Hirsimaki P, Aaltonen A, Mantyla E. Toxicity of antiestrogens. Breast J. 2002;8(2):92-96.

47. Okishiro M, Taguchi T, Jin Kim S, et al. Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer. 2009;115(5):952-961. doi: 10.1002/cncr.24111

48. Dieudonne AS, Lambrechts D, Claes B, et al. Prevalent breast cancer patients with a homozygous mutant status for CYP2D6*4: response and biomarkers in tamoxifen users. Breast Cancer Res Treat. 2009;118(3):531-538. doi: 10.1007/s10549-009-0463-5

49. Dieudonne AS, Lambrechts D, Smeets D, et al. The rs1800716 variant in CYP2D6 is associated with an increased double endometrial thickness in postmenopausal women on tamoxifen. Ann Oncol. 2014;25(1):90-95. doi: 10.1093/annonc/mdt399

50. Gunaldi M, Erkisi M, Afsar CU, et al. Evaluation of endometrial thickness and bone mineral density based on CYP2D6 polymorphisms in Turkish breast cancer patients receiving tamoxifen treatment. Pharmacology. 2014;94(3-4):183-189. doi: 10.1159/000363304

51. Jager NG, Rosing H, Linn SC, et al. Importance of highly selective LC-MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen. Breast Cancer Res Treat. 2012;133(2):793-798. doi: 10.1007/s10549-012-2000-1

52. Binkhorst L, Mathijssen RH, van Herk-Sukel MP, et al. Unjustified prescribing of CYP2D6 inhibiting SSRIs in women treated with tamoxifen. Breast Cancer Res Treat. 2013;139(3):923-929. doi: 10.1007/s10549-013-2585-z

53. Goetz MP, Sun JX, Suman VJ, et al. Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J Natl Cancer Inst. 2014;107(2). doi: 10.1093/jnci/dju401

54. Ratain MJ, Nakamura Y, Cox NJ. CYP2D6 genotype and tamoxifen activity: understanding interstudy variability in methodological quality. Clin Pharmacol Ther. 2013;94(2):185-187. doi: 10.1038/clpt.2013.66

55. Binkhorst L, Mathijssen RH, Jager A, van Gelder T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev. 2015;41(3):289-299. doi: 10.1016/j.ctrv.2015.01.002

56. Teft WA, Gong IY, Dingle B, et al. CYP3A4 and seasonal variation in vitamin D status in addition to CYP2D6 contribute to therapeutic endoxifen level during tamoxifen therapy. Breast Cancer Res Treat. 2013;139(1):95-105. doi: 10.1007/s10549-013-2511-4

57. Antunes MV, de Oliveira V, Raymundo S, et al. CYP3A4*22 is related to increased plasma levels of 4-hydroxytamoxifen and partially compensates for reduced CYP2D6 activation of tamoxifen. Pharmacogenomics. 2015;16(6):601-617. doi: 10.2217/pgs.15.13

58. Wang D, Guo Y, Wrighton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274-286. doi: 10.1038/tpj.2010.28

59. Thummel KE, Brimer C, Yasuda K, et al. Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. Mol Pharmacol. 2001;60(6):1399-1406.

60. Thirumaran RK, Lamba JK, Kim RB, et al. Intestinal CYP3A4 and midazolam disposition in vivo associate with VDR polymorphisms and show seasonal variation. Biochem Pharmacol. 2012;84(1):104-112. doi: 10.1016/j.bcp.2012.03.017

61. Chu W, Fyles A, Sellers EM, et al. Association between CYP3A4 genotype and risk of endometrial cancer following tamoxifen use. Carcinogenesis. 2007;28(10):2139-2142. doi: 10.1093/carcin/bgm087

62. Tucker AN, Tkaczuk KA, Lewis LM, et al. Polymorphisms in cytochrome P4503A5 (CYP3A5) may be associated with race and tumor characteristics, but not metabolism and side effects of tamoxifen in breast cancer patients. Cancer Lett. 2005;217(1):61-72. doi: 10.1016/j.canlet.2004.08.027

63. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23(36):9312-9318. doi: 10.1200/JCO.2005.03.3266

64. Murdter TE, Schroth W, Bacchus-Gerybadze L, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89(5):708-717. doi: 10.1038/clpt.2011.27

65. Mwinyi J, Vokinger K, Jetter A, et al. Impact of variable CYP genotypes on breast cancer relapse in patients undergoing adjuvant tamoxifen therapy. Cancer Chemother Pharmacol. 2014;73(6):1181-1188. doi: 10.1007/s00280-014-2453-5

66. Irvin WJ, Jr., Walko CM, Weck KE, et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol. 2011;29(24):3232-3239. doi: 10.1200/JCO.2010.31.4427

67. Fleeman N, Martin Saborido C, Payne K, et al. The clinical effectiveness and cost-effectiveness of genotyping for CYP2D6 for the management of women with breast cancer treated with tamoxifen: a systematic review. Health Technol Assess. 2011;15(33):1-102. doi: 10.3310/hta15330

68. NCCN Clinical Practice Guidelines in Oncology. Breast cancer version 2.2017 – April 6, 2017. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site

69. FDA Table of Pharmacogenomic Biomarkers in Drug Labeling. https://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm

70. Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662-673. doi: 10.1038/clpt.2011.34


Supplementary files

1. Рис. 1. Схема метаболизма тамоксифена [17].
Subject
Type Исследовательские инструменты
View (21KB)    
Indexing metadata

For citation:


Savelyeva M.I., Panchenko J.S., Urvantseva I.A., Ignatova A.K., Poddubnaya I.V. Perspectives of pharmacogenetics approach to personalized tamoxifen therapy. World Journal of Personalized Medicine. 2017;1(1):27-35. (In Russ.) https://doi.org/10.14341/WJPM9274

Views: 2226


ISSN 2587-733X (Online)